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The laws governing the spread of a cluster of particles in homogeneous isotropic
turbulence are derived using a theoretical approach based on inertial subrange scaling
and statistical diffusion theory. The equations for the mean square dispersion of a puff
admit an analytical solution in the inertial subrange and at large scales. The solution
is consistent with Taylor’s theory of absolute dispersion. An analytical derivation of
the Richardson–Obukhov constant of relative dispersion is presented. A time scale
for relative dispersion is identified, as well as relations between Lagrangian and
Eulerian structure functions. The results are extended to turbulence at finite Reynolds
number. A closure assumption for the relative kinetic energy, based on Taylor’s
theory, is presented. Comparisons with direct numerical simulations and laboratory
experiments are reported.

1. Introduction
In 1921, G. I. Taylor developed a fundamental theory to predict the time evolution

of the variance of the spatial distribution of marked fluid particles about a fixed
origin, in statistically homogeneous turbulent flow. The spreading of particles with
respect to a fixed origin is known as absolute dispersion. Taylor’s (1921) dispersion
theory is purely kinematic – no dynamic balance of forces is invoked – and is based
on the concurrent application of basic mechanical and statistical definitions, such as
velocity and velocity autocovariance of fluid particles. The resulting law of dispersion
is an exact analytical tool whose elegance and simplicity are a consequence of the
kinematic nature of the approach. The time-averaged spread of a continuous release,
or of a series of instantaneous releases, of a passive scalar with respect to a fixed point
can be determined if the Lagrangian velocity autocovariance is known. In stationary
conditions, realistic parameterized forms of the velocity autocovariance are relatively
easy to construct and test because of its independence of time.

The spreading of marked fluid particles around their instantaneous centre of mass
is known as relative dispersion. The application of Taylor’s theory to the derivation of
a parallel expression for the relative dispersion variance has not been widely explored
because of a number of difficulties. Dispersion statistics (both absolute and relative)
are in effect generated by double averages – over the particles in each realization of
the cluster and over the ensemble of realizations. If the flow is stationary, a single
particle in each realization is sufficient to evaluate absolute dispersion statistics, and
the double average reduces to a single average. This simplification does not apply to
relative dispersion: at any given instant in time, the basic variable used to calculate
relative dispersion statistics is the distance of a particle from the instantaneous
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centre of mass, which is determined by at least two particles in each realization.
Also, the autocovariance of relative velocity is a function of time, as well as of
the time lag, even in stationary turbulence. Because of the Lagrangian character of
the variables, and of the difficulties inherent in the time dependence of the process,
reference experimental data are scarce and unrepresentative, and parameterization of
the relative velocity autocorrelation function is impractical. A predictive closed theory
for relative dispersion equivalent to Taylor’s is not available.

From the analysis of various types of atmospheric dispersion data, Richardson
(1926) recorded, in terms of eddy diffusivity, the d〈r2〉/dt ∝ (

√
〈r2〉)4/3 power law,

where 〈r2〉 is the mean square separation between particles, which for a puff is
simply twice the mean square separation from the instantaneous centre of mass.
Although the index 4/3 was determined by Richardson on an empirical basis, and the
range of experimental values in his dataset exceeded the inertial subrange external
length scale, it is generally recognized that this choice ‘indicates his faith in the
existence of a universal physical law of sufficiently simple form’ (Monin & Yaglom
1975, p. 557) and was therefore, at least intuitively, based on dimensional arguments.
In fact, Taylor (1959) goes as far as to suggest that Richardson ‘had the idea
that the index was determined by something connected with the way energy was
handed down from larger to smaller and smaller eddies.’ Following an application
of Kolmogorov’s inertial subrange theory to relative dispersion, Obukhov (1941)
proposed the dependence of d〈r2〉/dt on the mean dissipation of kinetic energy ε

which led to the classical relation 〈r2〉 = Crεt
3, where Cr is the Richardson–Obukhov

constant (see also the independent derivation by Batchelor 1950). Although the
dimensional argument based on Kolmogorov’s theory has been somewhat questioned
(Lin & Reid 1963, p. 510), the validity of Obukhov’s approach is today widely
accepted (Batchelor & Townsend 1956, p. 386; Sawford 2001).

Nevertheless, the value of the universal proportionality coefficient Cr remains
elusive.

Several factors contributed to the substantial uncertainty in the estimate of Cr

through atmospheric measurements, laboratory experiments, and numerical simula-
tions. Experimental evidence of Richardson’s law (in the original 4/3 form or in
Obukhov’s t3 form) is controversial. Monin & Yaglom (1975, pp. 557, 558 and 565)
report at least thirteen papers describing experiments of two-dimensional diffusion
on sea or lake surfaces in support of the 4/3 law, and at least seven in support of
the t3 law; the experimental support to the 4/3 or t3 law is never questioned, and
the analysis is rather focused on explaining the discrepancies found in the constants
of proportionality. Other experiments are reported by Gifford (1977), who plots data
which seem to display a t3 behaviour, and concludes that ‘[s]everal more pieces of data
could perhaps be added, but these are ample to support the following conclusions.
For puffs or plumes released in the boundary layer there is, after the disappearance
of initial source size effects, a t3/2 spreading regime extending to somewhere between
1000 and 3000 s, . . . ’. On the contrary, Sawford (2001) states that ‘[w]ith perhaps
the exception of the data of Frenkiel & Katz (1956) . . . , there are no convincing
demonstrations of the t3 law, despite more recent attempts to analyse atmospheric
dispersion data in this light.’ Also, recent laboratory experiments hint at the possibility
that the t3 law may not hold even at medium to high Reynolds numbers unless the
initial particle separation is significantly small (Bourgoin et al. 2006).

Indirect empirical estimates of relative dispersion from scalar variances are
impractical because of the need to make additional assumptions on the internal scalar
probability density function, and also because the observed scalar fluctuations are
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affected by sampling time and intermittency effects (e.g. Wilson 1995). This contrasts
with the experimental measurements of absolute dispersion, where the particle spread
can be exactly inferred from the simple observation of mean scalar fields. Therefore,
measurements of mean square relative separation must be performed by direct
detection of the simultaneous trajectories of clusters (or just pairs) of particles.
Although these measurements have been accurately performed in laboratory flow at
low Reynolds number, they still represent a challenging task in atmospheric flow.

Uncertainties affecting the measurements of Cr in the atmosphere originate from
the imperfect homogeneity of turbulence caused by atmospheric stability effects,
statistical errors due to the limited sampling time used in order to collect data under
the same conditions, natural atmospheric variability and the presence of large-scale
structures.

On the other hand, high-Reynolds-number turbulence necessary for the develop-
ment of a well-defined clearly detectable inertial subrange spanning a few decades
is difficult to achieve in the controlled conditions of a water tank or a wind tunnel.
In addition, we will show that even for Reynolds numbers high enough to produce
inertial subrange scaling, there is a Reynolds-number dependence of Cr that must
be accounted for in experimental measurements. This suggests that there is a range
of Reynolds numbers where the universal scaling properties of some, but not all,
turbulence statistics are still preserved, and where universality does not apply to
the proportionality constants. Ott & Mann’s (2000) laboratory experiments at low
Reynolds number (the Taylor-scale Reynolds number Reλ was about 90 to 100,
corresponding to Re ∼ 600) indicate that inertial subrange scaling still holds for the
structure function of the second order, but does not apply to that of the third order.
Also, they observe t3 dependence of 〈r2〉. Evidence of the non-universal character of
inertial subrange constants is also apparent in other studies (Sawford 1991; Heinz
2003, p. 104).

Inconsistent estimates of Cr between different experiments are also ascribable
to the difficulty of performing simultaneous measurements of ε and 〈r2〉. Usually,
approximated estimates of ε are employed for the specific flows where relative
dispersion is measured. For example, Ott & Mann (2000) performed an indirect
estimate of ε based on the second-order Eulerian velocity structure function with the
Kolmogorov constant Ck =2.

Numerical simulations of relative separation have been performed essentially using
five basic techniques: direct numerical simulations (DNSs); Lagrangian stochastic two-
particle models; kinematic simulations; the eddy-damped quasi-normal Markovian
(EDQNM) approximation; and the Lagrangian-history direct-interaction (LHDI)
theory. These techniques have in general provided results that are inconsistent with
each other.

DNS results seem to be reasonably consistent with each other as well as at least
one laboratory experiment (Ott & Mann 2000). However, DNSs of turbulent flow
are currently possible only at moderate Reynolds numbers, and are not exempt from
statistical errors owing to the limited size of the ensemble, and from numerical
approximations generated by the forcing technique used and by the limitations
inherent in the discretization scheme.

Lagrangian stochastic two-particle models have the advantage of providing results
independent of ε, as all calculations can be carried out on scaled equations. Most
Lagrangian stochastic models using the acceleration drift term quadratic in the
velocity (e.g. Thomson 1990; Borgas & Sawford 1994; Franzese & Borgas 2002)
provide Cr consistently higher than DNS and laboratory estimates even accounting
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for Reynolds-number effects (1 � Cr � 2); linear drift term models (e.g. Novikov 1989;
Pedrizzetti & Novikov 1994; Heppe 1998) typically give smaller values (0.1 � Cr � 0.4).
The discrepancy may be due to difficulties accounting for the non-Gaussian statistics
of turbulent velocity differences (Franzese & Borgas 2002), viscosity effects at small
separations (Heppe 1998; Borgas & Yeung 2004), sensitivity to the Lagrangian time
scale and to the Eulerian velocity structure functions.

Kinematic simulations (e.g. Fung et al. 1992; Elliott & Majda 1996; Flohr &
Vassilicos 2000) provide much lower estimates of Cr , of the order 0.1. However,
Thomson & Devenish (2005) cast doubt on the ability of kinematic simulations to
reproduce t3 scaling correctly in the inertial subrange.

A revised application of the EDQNM approximation (Larchevêque & Lesieur 1981)
by Thomson (1996) provided Cr = 1.4. A much higher value (Cr = 5.5) was obtained
by Ott & Mann (2000) from an application of the LHDI theory (Kraichnan 1966)
after correcting a minor error in the original calculation (which had already been
remarked on by Thomson 1996).

Several theoretical treatments proposed in the early 1960s were based on the
assumption that the accelerations of the fluid particles at large Reynolds number are
uncorrelated. They include an original application of the statistical diffusion theory
by Lin (1960), the random force method developed by Novikov (1963), and relations
between velocity and position structure functions obtained by Ivanov & Stratonovich
(1963). All of the above provide the relation Cr = 2Co, where Co is the Lagrangian
velocity structure function constant. Borgas & Sawford (1991) have shown that
accounting for the two-particle acceleration covariance provides for a value of Cr

smaller than 2Co by an undetermined quantity which depends on the structure of
the two-particle acceleration covariance. Mikkelsen, Larsen & Pécseli (1987) related
the growth rate of a puff to common one-dimensional velocity spectra, under the
assumptions that the displacements of a particle in the frame of reference moving
with the centre of mass are uncorrelated; and that a two-particle velocity covariance
can be estimated as the product of a two-point (Eulerian) space-correlation and a
single-particle (Lagrangian) autocorrelation. (Batchelor 1952 expressed criticism of
the latter approximation.) Mikkelsen et al. (1987) estimated Cr =3.2 from a relation
equivalent to Cr ∝ C

3/2
k , where Ck is the constant in the second-order Eulerian

longitudinal velocity structure function.
We derive a differential equation for the mean square particle separation from the

centre of mass of a puff in one dimension, 〈y2
r 〉, which is equal to 1

6
〈r2〉. The equation

can be solved numerically, and has an analytical solution in the inertial subrange
and at large scales. The derivation of 〈y2

r 〉 is based on a statistical diffusion theory of
relative dispersion, and on the inertial subrange scaling form of the turbulent kinetic
energy of separation.

The plan of the paper is as follows. In the first part of § 2, we briefly describe
the notation adopted and the types of averages that will be used thereafter. We
then derive some statistical properties for clusters of particles, including the relation
between mean square distance between the particles 〈r2〉 and mean square distance
of the particles from the centre of mass along an arbitrary direction 〈y2

r 〉.
The governing equation for 〈y2

r 〉 is derived in § 3, along with the definition of
the decorrelation time scale for relative dispersion, which is the time integral of
the relative velocity autocorrelation function. The relative dispersion time scale, as
opposed to the autocorrelation function, is shown to be the fundamental quantity in
the calculation of 〈y2

r 〉.
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Relative dispersion in the inertial subrange is investigated in § 4: we present a
derivation of the solution in the inertial subrange; the analytical expression of Cr as
a function of Co; the relation between Co and Ck; and the extension of the results to
lower-Reynolds-number turbulence. The large-scale solution is presented in § 5, and
the solution in the vicinity of a finite source is discussed in § 6.

A closure for the relative turbulent kinetic energy that appears in the governing
equation is determined in § 7, where a large-eddy length scale is defined based on the
statistical theory of absolute dispersion.

In § 8, several predictions are compared to what appear, at present, to be reliable
datasets accounting for Reynolds-number dependence, namely DNS and laboratory
observations.

2. Statistical properties of a cluster of particles
The velocity of a particle along its trajectory y(t) will be indicated by v(t) = d y/dt ,

the components of y and v along an arbitrary y-axis are denoted by y and v,
respectively. Two types of averages will be used: over a cluster of particles in one
single realization of the velocity field; and over a statistical ensemble of realizations
of the turbulent flow.

Overbars represent averaging over a cluster of N particles in one single realization
of the velocity field:

yn(t) =
1

N

N∑
i=1

yn
i , vn(t) =

1

N

N∑
i=1

vn
i , (2.1)

are the moments of position and velocity of the particles (in one realization of the
flow), where yi and vi denote position and velocity of the ith particle along an
arbitrary y-axis.

Angle brackets indicate averaging over an ensemble of realizations of the flow field:
the moments of position and velocity of the particles are defined as

〈yn(t)〉 =

∫
ynp(y) dy, 〈vn(t)〉 =

∫
vnp(v) dv, (2.2)

where p indicates a probability density function.
Because the averages are unconditional, the following operators are equivalent:

〈 · 〉 ≡ 〈 · 〉 ≡ 〈 · 〉, and hereinafter only simple angle brackets will be used to indicate
double averages. The use of unconditional averages implies that the averages are
taken long enough after release that the effects of initial conditions have disappeared.

For simplicity, we assume turbulence with no mean flow. However, the equations
derived in this paper are also valid for constant mean flow, if the variables are
expressed in an inertial coordinate system moving with the mean velocity. Note that
even in a stationary, homogeneous and isotropic turbulence with no mean flow and
a spherical source centred on the origin, v(t) �= 0 and y(t) �= 0 for some t , while
〈v(t)〉 = 0 and 〈 y(t)〉 = 0.

Position and velocity of a particle can be decomposed as

y = y + yr , v = v + vr , (2.3)

which define yr and vr as position and velocity of a particle relative to the centre of
mass of the cluster. From (2.3), the mean square distance of the particles from the
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origin and the mean square velocity can be partitioned as follows:

〈 y2〉 = 〈 y2〉 +
〈

y2
r

〉
, 〈v2〉 = 〈v2〉 +

〈
v2

r

〉
. (2.4)

Combining (2.1) and (2.4), we derive

〈 y2〉 =
1

N
〈 y2〉 +

(
1 − 1

N

)
〈 yi yj 〉, (2.5)

〈 y2
r 〉 =

(
1 − 1

N

)(
〈 y2〉 − 〈 yi yj 〉

)
, (2.6)

for any i, j � N with i �= j . Analogous relations can be derived for 〈v2〉 and 〈v2
r 〉.

The vector r determines the relative position of two particles, i.e. r = yi − yj . The
mean square distance between the particles over an ensemble of realizations is defined
as

〈r2〉 =
1

N(N − 1)

N∑
i=1

N∑
j=1

〈( yi − yj )
2〉; (2.7)

from (2.7) and (2.6) we obtain the fundamental expression

〈r2〉 =
2N

N − 1

〈
y2

r

〉
, (2.8)

which shows that the mean square distance of the particles of a cluster from the centre
of mass 〈 y2

r 〉, which is a measure of the size of the cluster, depends on the number of
particles in the cluster, as well as on the ensemble mean square separation between the
particles 〈r2〉. Therefore, for clusters consisting of two particles, 〈r2〉 = 4〈 y2

r 〉, whereas
for a continuous distribution of particles (or N → ∞), we recover the well-known
relation 〈r2〉 =2〈 y2

r 〉 (Batchelor 1952).
Because of isotropy, the mean square of a vector is three times the mean square of

one of its components: 〈 y2
r 〉 =3〈y2

r 〉. As a consequence,

〈r2〉 =
6N

N − 1

〈
y2

r

〉
. (2.9)

In this paper, we will derive an expression for 〈y2
r 〉, assuming a continuous distribution

of particles in the cluster. The Richardson–Obukhov law for 〈r2〉, and the Richardson–
Obukhov constant Cr , follow immediately from (2.9). Figure 1 shows a three-
dimensional Gaussian distribution of particles, obtained as a superposition of several
realizations to represent ensemble statistics. The two grey spheres represent the iso-
probability surfaces corresponding to | yr | =

√
〈 y2

r 〉 (internal sphere) and | yr | =
√

〈r2〉
(external sphere). The values of

√
〈 y2

r 〉 =
√

3〈y2
r 〉 and

√
〈r2〉 =

√
6〈y2

r 〉 are also re-
ported onto the yr -axis.

The letter u indicates the Eulerian counterpart of the Lagrangian variable v. Because
we consider homogeneous turbulence, we will often refer to 〈v2〉 as ‘turbulent kinetic
energy’, although 〈v2〉 is in fact rigorously proportional to the turbulent kinetic energy
per unit mass k, namely 〈v2〉 = 〈u2〉 = 2k/3 (Lumley 1961).

In the next section, the governing equations for the evolution of 〈y2
r 〉 are derived.

The equations could be expressed directly in terms of r or yr . However, the present
derivation is more intuitive, and establishes a direct parallel with Taylor’s theory,
which was originally derived for one-dimensional dispersion. Extension of the results
to three dimensions is straightforward.
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Figure 1. Three-dimensional Gaussian distribution of particles. The two grey spheres

represent the iso-probability surfaces corresponding to | yr | =
√

〈 y2
r 〉 (internal sphere) and | yr | =√

〈r2〉 (external sphere). The values of
√

〈 y2
r 〉 =

√
3〈y2

r 〉 and
√

〈r2〉 =
√

6〈y2
r 〉 are also reported

onto the yr -axis.

3. Governing equations
In this section, we derive the evolution equation for the mean square distance of

the particles of a cluster from the instantaneous centre of mass over an ensemble of
realizations, 〈y2

r 〉. The solutions in the inertial subrange and at large scales will be
presented in § § 4 and 5, respectively.

The variable 〈y2
r (t)〉 satisfies the differential equation:

d

dt

〈
y2

r

〉
= 2

〈
yr

dyr

dt

〉
= 2

∫ t

0

〈vr (t)vr (t
′)〉 dt ′, (3.1)

where the release time to = 0 for simplicity. Operating the change of variable τ = t − t ′,
(3.1) becomes:

d

dt

〈
y2

r

〉
= 2

∫ t

0

〈vr (t)vr (t − τ )〉 dτ = 2
〈
v2

r (t)
〉 ∫ t

0

Rr (t, τ ) dτ, (3.2)

where the autocorrelation coefficient Rr of Lagrangian relative velocity vr was defined
as

Rr (t, τ ) =
〈vr (t)vr (t − τ )〉

〈v2
r (t)〉

, (3.3)

with 0 � τ � t . Rr is a function of the two variables t and τ because the relative
velocity vr is a non-stationary random function. This is a consequence of the range
of eddy sizes contributing to vr increasing with time as long as the particles have
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correlated motions; relative dispersion is an accelerating process (Batchelor 1952).
Equation (3.2) can be written in the form

d

dt

〈
y2

r

〉
= 2

〈
v2

r

〉
Tr, (3.4)

where

Tr (t) =

∫ t

0

Rr (t, τ ) dτ (3.5)

is a time-dependent Lagrangian decorrelation time scale for turbulent relative
dispersion. According to Csanady (1973, p. 92), ‘[t]he Lagrangian time-scale Tr is
characteristic of all those eddies contributing to relative velocities, which we have
seen to be mainly those comparable in size to typical particle separation in cloud
(i.e. also to cloud size). As the cloud grows, larger eddies begin to contribute, which,
generally speaking, have longer ‘lifetimes’, so that the Lagrangian time-scale Tr slowly
increases. So does, of course, the mean-square relative velocity.’

We will obtain Tr following a procedure well established in the context of one-
particle autocorrelations (Tennekes 1979): we (i) determine the inertial subrange
expression of Rr ; (ii) assume the subrange expression of Rr to be the small-time
expansion of an asymptotically decaying function valid within and beyond inertial
subrange scales; and (iii) estimate the Lagrangian time scale Tr from this function.

As a result, we will obtain a differential equation for 〈y2
r 〉, which is valid within and

beyond inertial subrange scales.
The remainder of this section is structured as follows: the relative velocity covariance

〈vr (t)vr (t − τ )〉 which appears in (3.3) is determined in § 3.1; the autocorrelation Rr ,
the Lagrangian relative time scale Tr , the mean square relative velocity 〈v2

r 〉 and the
evolution equation for 〈y2

r 〉 are given in § 3.2.

3.1. Lagrangian relative velocity autocovariance and structure function

The velocity autocovariance 〈vr (t)vr (t − τ )〉 can be expressed as

〈vr (t)vr (t − τ )〉 = 1
2

[〈
v2

r (t)
〉

+
〈
v2

r (t − τ )
〉

− 〈(∆τvr )
2〉

]
, (3.6)

where ∆τvr = vr (t)−vr (t −τ ), and 〈(∆τvr )
2〉 is a Lagrangian relative velocity structure

function. From (2.4), we can write

〈(∆τvr )
2〉 = 〈(∆τv)2〉 − 〈(∆τv)2〉 (3.7)

In each realization of a cluster composed by N particles, the velocity time difference
for the centre of mass is defined as

∆τv =
1

N

N∑
i=1

∆τvi (3.8)

and, after squaring and averaging over the ensemble of realizations,

〈(∆τv)2〉 =
1

N
〈(∆τv)2〉 +

(
1 − 1

N

)
〈∆τvi∆τvj 〉 (3.9)

for any i, j � N with i �= j . Therefore,

〈(∆τvr )
2〉 =

(
1 − 1

N

)
[〈(∆τv)2〉 − 〈∆τvi∆τvj 〉]. (3.10)

Our goal is to determine the expression of Rr in the inertial subrange, and then
generalize it to larger scales. According to the Kolmogorov similarity hypotheses for
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locally isotropic turbulence,

〈(∆τv)2〉 = Coετ (3.11)

for 1 � τ/τη � Re1/2, where the Kolmogorov time scale τη =(ν/ε)1/2, ν is the viscosity,
ε is the mean dissipation rate of turbulent kinetic energy per unit mass, and Co

is a universal constant. Since, in the inertial subrange, the acceleration correlation
function is short-ranged both in space and time, the acceleration of a particle is only
weakly correlated with that of any other particle (Monin & Yaglom 1975, p. 546;
Thomson 1990). Therefore, the velocity time increments of different particles are
weakly correlated with each other, and 〈∆τvi∆τvj 〉 is generally assumed to be
negligible compared to 〈(∆τv)2〉 (Kurbanmuradov & Sabelfeld 1995; Kurbanmuradov
et al. 2001; Franzese & Borgas 2002; Borgas & Yeung 2004).

Substituting (3.11) into (3.10), and neglecting 〈∆τvi∆τvj 〉, we have

〈(∆τvr )
2〉 ≈

(
1 − 1

N

)
Coετ, (3.12)

which gives, for a large number of particles N ,

〈(∆τvr )
2〉 ≈ Coετ. (3.13)

Equation (3.13), together with (3.7), shows that the velocity structure function for the
centre of mass of a puff is negligible compared to the velocity structure function
of a particle. Note that for the case of a pair of particles (N = 2), since the
relative velocity between two particles vi − vj = 2vr , (3.12) gives the two-particle
Lagrangian longitudinal structure function commonly used in quasi-one-dimensional
relative dispersion stochastic models, i.e. 〈[∆τ (vi − vj )]

2〉 ≈ 2Coετ (Kurbanmuradov
& Sabelfeld 1995; Franzese & Borgas 2002; Borgas & Yeung 2004).

3.2. Autocorrelation function, Lagrangian time scale and evolution equation

Substituting (3.6) and (3.13) into (3.3), Rr (t, τ ) is expressed as

Rr (t, τ ) =
〈vr (t)vr (t − τ )〉

〈v2
r (t)〉

= 1 − Coε

2 〈v2
r (t)〉

τ −
〈
v2

r (t)
〉

−
〈
v2

r (t − τ )
〉

2 〈v2
r (t)〉

. (3.14)

According to (2.4), the turbulent kinetic energy 〈v2〉 can be decomposed as
〈v2〉 = 〈v2〉 + 〈v2

r 〉. The term 〈v2〉 is the energy associated with the motion of the
centre of mass, which is caused by the eddies larger than a characteristic size D of
the cluster. The term 〈v2

r 〉 is therefore the energy contained in the remaining part of
the spectrum, namely the energy of all eddies of size smaller or comparable to D.
According to inertial subrange scaling 〈v2

r 〉 ∝ (εD)2/3 ∝ t . Therefore, (3.14) becomes:

Rr (t, τ ) = 1 − Coε

2 〈v2
r 〉τ − 1

2t
τ, (3.15)

which is exact within the limits of the inertial subrange.
In order to obtain a more general expression, valid beyond inertial subrange

scales, we will use the same logical steps commonly taken to define the standard
autocorrelation function for absolute velocity R(τ ) from its inertial range expression
and from the Lagrangian time scale TL =2〈v2〉/(Coε) (e.g. Corrsin 1963; Tennekes
1979). To this extent, we note that (3.15) may be interpreted as a Taylor expansion at
small τ of some function valid beyond inertial subrange time scales. Equation (3.2)
shows that the exact form of Rr (t, τ ) is relatively unimportant in the calculation of
〈y2

r 〉, whereas its integral Tr =
∫ t

0
Rrdτ (3.5) determines the solution directly.
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For simplicity, we assume a function of the exponential-decay type, i.e.
Rr (t, τ ) = exp(−τ/Tr ), which satisfies (3.5) provided that Rr (t, τ ) ≈ 0 for τ = t . This
assumption is justified by theoretical considerations (Csanady 1973, p. 92), and is
very well supported by experiments and DNS (Jullien, Paret & Tabeling 1999; Goto
& Vassilicos 2004; Biferale et al. 2005).

Matching the small-time first-order Taylor series expansion of exp(−τ/Tr ) with the
inertial subrange form of Rr (t, τ ) given in (3.15), we obtain:

1 − Coε

2 〈v2
r 〉τ − 1

2t
τ = 1 − τ

Tr

+ O(τ 2), (3.16)

which provides:

Tr =

(
Coε

2 〈v2
r 〉 +

1

2t

)−1

. (3.17)

This expression of Tr is valid both in the inertial subrange and at larger scales, but
is not rigorous in the transition regime at scales comparable to the turbulence scale.
However, the second term in parentheses vanishes at large t , defining a transition
between different regimes without the need to impose an artificial interpolation to
adjust Tr . It can be remarked that because at large dispersion times 〈v2

r 〉 tends to
〈v2〉, Tr tends to TL. As a consequence, Rr (t, τ ) tends to become independent of t and
equal to R(τ ).

Equation (3.4) becomes, after substituting Tr from (3.17):

d

dt

〈
y2

r

〉
=

4
〈
v2

r

〉2
t

〈v2
r 〉 + Coεt

, (3.18)

which, by virtue of (3.17), is valid in the inertial subrange and at large scales, but
may inaccurately describe the transition regime. In the next section, the inertial
subrange solution of (3.18) is derived, as well as additional relations between 〈v2

r 〉 and
the Eulerian second-order velocity structure function, and an analysis of Reynolds-
number effects, which will be used in the comparison with experiments and DNS.
The large-scale solution of (3.18) is presented in § 5.

4. Inertial subrange
4.1. Solution in the inertial subrange

Before obtaining the solution to (3.18) in the inertial subrange, we must derive 〈v2
r 〉

in terms of known quantities. Because 〈y2
r 〉 represents the square of a characteristic

size of the puff, according to inertial subrange scaling 〈y2
r 〉 ∝ 〈v2

r 〉3/ε2. If we indicate
by LL a length scale of the energy-containing eddies, we also have: L2

L ∝ 〈v2〉3/ε2.
Therefore, 〈v2

r 〉 can be obtained from the ratio 〈y2
r 〉/L2

L; it is important to note that

other variables can equally be chosen instead of
√

〈y2
r 〉 to represent the characteristic

size of the cloud, as long as LL is consistent with this choice. A closure assumption
for LL is presented in § 7.

We can now write: 〈
v2

r

〉
=

〈
v2

〉 (〈
y2

r

〉
L2

L

)1/3

, (4.1)
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which is valid in the inertial subrange, namely for η2 � 〈y2
r 〉 � L2

L. (The evolution
of 〈v2

r 〉 for 〈y2
r 〉  L2

L should, in principle, be determined by a different law, which
should include the large-time limit 〈v2

r 〉 = 〈v2〉 for 〈y2
r 〉 � L2

L.)
Note that, by definition, the proportionality L2

L ∝ 〈v2〉3/ε2 can be expressed as

L2
L = CL〈v2〉T 2

L, (4.2)

where TL = 2〈v2〉/(Coε) is the one-particle Lagrangian time scale of turbulence, and
the constant CL will be determined by the closure assumption in § 7.

Although (3.18) in the inertial subrange is an implicit equation as 〈v2
r 〉 depends on

〈y2
r 〉, it can be solved analytically, and admits the following solution:〈

y2
r

〉
= Cyεt

3 (4.3)

with

Cy = αCo (4.4)

and the constant

α =
1

2

L2
L

〈v2〉 T 2
L

(√
1 +

4

3

〈v2〉 T 2
L

L2
L

− 1

)3

=
CL

2

(√
1 +

4

3CL

− 1

)3

. (4.5)

According to (2.9), the relation between 〈y2
r 〉, which is the one-dimensional mean

square distance from the centre of mass, and Richardson’s 〈r2〉, which is the
mean square distance between particles, is simply 〈r2〉 =6〈y2

r 〉. Therefore, the
relation between Cy and the more familiar Richardson–Obukhov two-particle relative
dispersion constant Cr which appears in the equation 〈r2〉 =Crεt

3 is given by Cr = 6Cy ,
which implies:

Cr = 6αCo. (4.6)

The proportionality between Cr and Co is physically sound. Co is defined by the
structure function (3.11), and is a measure of the persistence of the autocorrelation of
the Lagrangian velocity. A larger Co determines a shorter decorrelation time scale TL,
which implies faster separation between the particles. When the respective velocity
autocovariances of two particles are smaller, the particles travel together for shorter
times as they tend to move independently of each other. Likewise, because the particle
trajectories tend to be independent of each other, their centre of mass tends more
rapidly toward stationarity.

The complete evolution in terms of relative and absolute dispersion that emerges
from (4.6) is counterintuitive. As is well known, when TL decreases because of larger
values of the energy dissipation ε or of Co, the cloud undergoes to overall slower
dispersion as 〈y2〉 is smaller; however, at the same time, the cloud relative expansion
〈y2

r 〉 is enhanced, causing a faster suppression of the meandering oscillations, and a
faster decay of the internal scalar fluctuations. By contrast, note that several sensitivity
tests to Co that were performed in two-particle Lagrangian stochastic models (e.g.
Borgas & Sawford 1994; Kurbanmuradov et al. 2001; Franzese & Borgas 2002) show
that an increase in Co causes a lower value of Cr , namely a slower separation, in
conflict with (4.6). The reasons for this anomaly are explained in § 4.2, where a relation
is established between second-order Eulerian velocity structure function and relative
dispersion energy 〈v2

r 〉. The results in § 4.2 also provide the means for validating the
present theory with DNS and experimental data at finite Reynolds numbers.
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4.2. Eulerian velocity structure function and relative dispersion energy

The relative dispersion energy 〈v2
r 〉 is used to establish a relation between the

Kolmogorov constants in the Eulerian and Lagrangian velocity structure functions.
We consider the Eulerian longitudinal velocity structure function DLL(d) = 〈[uL(x +
d) − uL(x)]2〉, where x is a fixed point in space, uL is the component of the Eulerian
velocity u parallel to the vector d, and d = |d|. For very high Reynolds number, an
inertial subrange is defined for 1 � d/η � Re3/4, where the Kolmogorov microscale
η = (ν3/ε)1/4. In the inertial subrange, DLL takes the form:

DLL(d) = Ck(εd)2/3, (4.7)

where Ck is the Kolmogorov constant. Equation (4.7) can be expressed as:

DLL(d) = 2〈u2〉
(

d2

L2
E

)1/3

, (4.8)

where

L2
E =

(
2

Ck

)3 〈u2〉3

ε2
. (4.9)

Simple approximate forms of (4.8) have been used often (Durbin 1980; Sawford &
Hunt 1986; Thomson 1990) without an explicit dependence on Ck , by simply assuming
L2

E = 〈u2〉3/ε2 (in fact, implicitly assuming Ck =2).
Because L2

E ∝ 〈u2〉3/ε2 and L2
L ∝ 〈v2〉3/ε2, it follows that L2

E ∝ L2
L, which can

be written in the form

L2
E = 6Cσ L2

L = 6CσCL

4〈v2〉3

C2
oε

2
, (4.10)

where L2
L was given by (4.2), and Cσ is a constant of proportionality. The factor

6 is unessential as it could be included in the constant Cσ . It is explicitly reported
in (4.10) only because it accounts for the different magnitude between a two-particle
length scale in three dimensions (such as LE), and a measure of distance from the
centre of mass in one dimension (such as LL), as described by (2.9). From (4.9) and
(4.10), we have:

Ck =
C2/3

o

(3CσCL)1/3
. (4.11)

A power-law relation between Ck and Co is to be expected on physical grounds,
as the result of a relation between integral temporal and spatial scales (Maurizi,
Pagnini & Tampieri 2004). Equation (4.8) shows that the term (d/LE)2/3 acts as a
filter for the turbulent energy 〈u2〉, i.e. DLL is proportional to the fraction of 〈u2〉
which is effective for the relative dispersion of particles separated by a distance d .
Equation (4.10) shows that if Co increases (e.g. as a consequence of an increase of the
Reynolds number), LE decreases. Therefore, according to (4.8), a larger fraction of
the total energy is available for the separation at the fixed distance d . This corresponds
to a larger Ck as shown by (4.7) and (4.11). Also, a higher rate of separation between
marked particles, represented by a larger Cr , is expected, as shown by (4.6).

The anomalous inverse relation between Co and Cr observed in stochastic
Lagrangian models (Borgas & Sawford 1994; Kurbanmuradov et al. 2001; Franzese
& Borgas 2002) arises from the violation of (4.11). Increasing Co with a fixed Ck

determines a spurious increase in Cσ , namely, the proportion between Eulerian and
Lagrangian scales is altered, with an overestimated value of LE . In such conditions,
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the particles separate at a slower rate because the fraction of energy used for the
separation process is underestimated.

Equation (4.11) will be tested against DNS data at various Reynolds numbers in
§ 8, after applying the correction for finite-Reynolds-number effects described in the
next section.

4.3. Reynolds number effects

In this section, we will show that the relations between the classical turbulence
constants Cr , Co and Ck established in the previous sections imply specific Reynolds
number effects on relative dispersion. The relations derived in this section will be used
in § 8 for the comparisons with DNS and experimental data which are available at low
to medium Reynolds number. The dependence of Cr and Ck on the Reynolds number
is determined on the basis of the effects of the Reynolds number on Co. Sawford
(1991) used a second-order autoregressive Lagrangian model for acceleration of fluid
particles to show that the Lagrangian time scale TL depends on the Reynolds number,
with high sensitivity for Reλ � 103, where Reλ =

√
〈u2〉λ/ν is the Reynolds number

based on the Taylor microscale λ=
√

15〈u2〉ν/ε, which gives Reλ =
√

15Re. As a
consequence, Sawford (1991) found that the effective value of Co determined from
the Reynolds-number-dependent TL is approximated well by

C̃o = Cof (Reλ), (4.12)

where C̃o is the value of Co at finite Reynolds number, and f is an asymptotic
function which increases with Reλ, and tends to 1 as Reλ tends to infinity.

From (4.6) and (4.12), we find that the explicit dependence of Cr on Reλ is simply
written as:

C̃r = Crf (Reλ), (4.13)

where C̃r is the value of Cr at finite Reynolds number, and Cr is given by (4.4). The
Reynolds number effects on Ck are obtained using (4.12) along with (4.11):

C̃k = Ckf (Reλ)
2/3, (4.14)

where C̃k is the value of Ck at finite Reynolds number.
Finally, the explicit dependence of LE on Reλ can be obtained using (4.12):

L̃E = LEf (Reλ)
−1, (4.15)

where the inverse relation between L̃E and Reλ shows that, at finite Reλ, the velocities
are correlated at larger distances than for the asymptotic large Reλ limit, consistently
with the description given in § 4.2.

We will use Sawford’s (1991) estimate for f :

f (Reλ) =
(
1 + 7.5C2

oRe−1.64
λ

)−1
, (4.16)

where Co was estimated to be about 7 based on the comparisons with DNS data.
This is also the value we will use in our comparisons. Sawford’s model with (4.16)
accurately reproduces the longitudinal Lagrangian velocity structure function 〈(∆τv)2〉
obtained by the DNS of Yeung & Pope (1989), for Reλ ranging from about 40 to
about 90. It is possible to use other approximations for f : for example, Lien &
D’Asaro (2002) proposed f = 1 −

√
10/Reλ, which gives results comparable to those

obtained using (4.16).
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Equation (4.12) was tested against DNS data by Sawford (1991); equations (4.13)
and (4.14) will be used in the tests against DNS data and a laboratory experiment
in § 8.

5. Large-scale solution
A complete analytical formulation of 〈y2

r 〉, beyond inertial subrange scales, can be
derived using (4.1) for 〈y2

r 〉 � L2
L, and 〈v2

r 〉 = 〈v2〉 for 〈y2
r 〉 > L2

L. This is a somewhat
crude approximation, which has the advantage of providing a simple formulation for
the relative dispersion spanning all scales of motion. The results are valid at inertial
subrange time scales and at large times, but are only approximated in the transition
region 〈y2

r 〉  L2
L. In this region, an accurate estimate of 〈v2

r 〉 is required in order to
reproduce the details of dispersion.

Because the solution to (3.4) for 〈y2
r 〉 � L2

L is 〈y2
r 〉 = Cyεt

3, the time Ty at which
〈y2

r 〉 = L2
L can be approximated by:

CyεT
3
y ≈ L2

L, (5.1)

which defines Ty = βTL, with β = (3α/4)−1/3. Therefore, the solution to (3.2) is:〈
y2

r

〉
= Cyεt

3 for t � Ty, (5.2a)〈
y2

r

〉
= L2

L + 2

∫ t

Ty

〈
v2

r

〉
Trdt = L2

L + 2〈v2〉TL(t − Ty) for t � Ty. (5.2b)

Equations (5.2a) and (5.2b) can be rewritten as:〈
y2

r

〉
= 2〈v2〉T 2

Lα

(
t

TL

)3

for t � Ty, (5.3a)

〈
y2

r

〉
= 2〈v2〉T 2

L

(
CL

2
− β +

t

TL

)
for t � Ty, (5.3b)

which emphasize the analogy with the absolute dispersion theory: 〈y2
r 〉 depends on the

same turbulence variables as 〈y2〉, namely kinetic energy and Lagrangian time scale.
As a consequence, the representation of the non-dimensional variable 〈y2

r 〉/(〈v2〉T 2
L ) as

a function of t/TL is unique, consistent with the unique representation of 〈y2〉/(〈v2〉T 2
L )

as a function of t/TL.
The consistency with Taylor’s formulation for 〈y2〉 is a consequence of the

application of the statistical diffusion theory to relative dispersion, along with the
definition of 〈v2

r 〉 in (4.1) as a function of the same Lagrangian quantities employed
in the derivation of 〈y2〉. As is to be expected on physical grounds, every change
in the flow characteristics that affects 〈y2〉 (through 〈v2〉 or TL) has a corresponding
effect on 〈y2

r 〉, while still satisfying the realizability condition 〈y2
r 〉 < 〈y2〉, which is not

immediately apparent from the classical form 〈y2
r 〉 =Cyεt

3.

6. Finite source size
We consider now the case of a cluster with an initial mean square particle separation,

corresponding to a source with a finite size. In the vicinity of a finite source, the t3

inertial subrange scaling for 〈y2
r 〉 breaks down because the statistical properties of vr

at the source are affected by the initial conditions. A clear illustration of the source
effects is provided by the average rate of expansion of a particle pair, which is zero
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at the source (because at t = 0 it is equivalent to an Eulerian statistic), but is positive
at any time after release (e.g. Faller 1996).

Batchelor (1952) carried out an analysis of source effects on the relative dispersion
of pairs of particles initially separated by a distance ro = |ro|. If 1 � ro/η � Re3/4, the
source effects are short time ranged and last for an initial time lapse t � τs = (r2

o /ε)
1/3,

namely the effects of initial conditions rapidly vanish as the evolution of 〈r2〉 tends
to be uninfluenced by the source, and to conform to a t3 behaviour. It is possible
to extend Batchelor’s formulation to clusters of particles, but the results are not
general because they depend on the specific distribution function at the source (see
the Appendix). In any case, the complete evolution from near-source behaviour to
intermediate asymptotic scaling law in the inertial subrange is not known, and is
usually modelled using an approximation for the source distribution and a heuristic
interpolation between the two regimes (Batchelor 1950; Luhar, Hibberd & Borgas
2000).

We use a simple approximate formulation for expansion from finite sources
which has some advantages: this approach naturally ensures consistency with the
formulation at larger times avoiding the need for empirical interpolations at t ∼ τs

and the introduction of new parameters; the resulting equations have the desirable
properties of representing expansion and rate of expansion as continuous and
differentiable processes (Franzese 2003; Goto & Vassilicos 2004; Cassiani, Franzese &
Giostra 2005).

The formulation is obtained enforcing a principle of self-similar expansion for
releases from different source sizes, namely, the evolution of 〈y2

r 〉 at a given time t

does not depend on 〈y2
r (0)〉, but only on the instantaneous value of 〈y2

r 〉. For sources
in the inertial subrange, self-similar relative expansion is naturally derived directly
from the original Richardson 4/3 law, which can be written in the form:

d

dt

〈
y2

r

〉
∝

〈
y2

r

〉2/3
= 3(Cyε)

1/3
〈
y2

r

〉2/3
. (6.1)

Integration of (6.1) gives: 〈
y2

r

〉
= Cyε(ts + t)3, (6.2)

where ts = [〈y2
r (0)〉/(Cyε)]

1/3. In fact, ts corresponds physically to the time required for
a virtual point source release to expand to the mean square size 〈y2

r (0)〉.
In general, self-similarity can be simply applied by imposing a translation of the

time origin by an amount ts in the equations of 〈y2
r 〉 for a point source. Therefore,

the time-dependent decorrelation time scale Tr for finite sources is expressed as:

Tr =

[
Coε

2 〈v2
r 〉 +

1

2(ts + t)

]−1

(6.3)

and the complete solution is:〈
y2

r

〉
= 2〈v2〉T 2

Lα

(
ts + t

TL

)3

for t � Ty − ts, (6.4a)

〈
y2

r

〉
= 2〈v2〉T 2

L

(
CL

2
− β +

ts + t

TL

)
for t � Ty − ts . (6.4b)

Note that (6.4a) and (6.4b) depend on the same variables as (5.3a) and (5.3b). In
§ 8, these formulae will be represented along with 〈y2〉 to give a complete picture of
relative and absolute dispersion from the source until the diffusive regime.
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7. A closure for the relative turbulent kinetic energy 〈v2
r 〉

The equations for 〈y2
r 〉 derived in the previous sections are unclosed in that the

large-eddy length scale LL, which appears in the formulation of 〈v2
r 〉 in (4.1), is not

known. In this section, we propose a simple and physical closure assumption for
LL consistent with 〈y2

r 〉, which was used as a length scale for the cluster size in the
definition of 〈v2

r 〉 given in (4.1). This will also permit quantitative comparisons with
DNS and experimental data, including a theoretical prediction for the Richardson–
Obukhov constant Cr .

L2
L corresponds to the value of 〈y2

r 〉 when the cloud has reached a size comparable
to the large-eddy length scale. A sound estimate of L2

L is given by 〈y2〉 when it
has reached a value comparable to the large-eddy length scale, and starts evolving
according to the Brownian diffusion regime, i.e. L2

L = 〈y2〉 at the onset of the diffusion
regime.

The problem is that the transition of 〈y2〉 to the diffusion regime is not sharp and
unequivocal, because the autocorrelation of Lagrangian velocity R(τ ) = 〈v(t)v(t +
τ )〉/〈v2〉 is asymptotically decaying, with smooth regime transitions. In order to
identify as accurately as possible a virtual transition time to Brownian diffusion, we
will use a linear form for R(τ ) (Pasquill 1962, p. 92; Monin & Yaglom 1971, p. 578;
Arya 1999, p. 157), which exactly defines a transition time to perfectly uncorrelated
velocities. The value of 〈y2〉 corresponding to this time defines L2

L.
R(τ ) is defined as

R(τ ) = 1 − τ

2TL

for τ � 2TL, (7.1a)

R(τ ) = 0 for τ � 2TL, (7.1b)

which formally define the onset of a Brownian diffusion regime after a dispersion
time t =2TL. Application of Taylor’s (1921) theory for a point source gives:

〈y2〉 = 〈v2〉T 2
L

(
t2

T 2
L

− t3

6T 3
L

)
for t � 2TL, (7.2a)

〈y2〉 = 〈v2〉T 2
L

(
2t

TL

− 4

3

)
for t � 2TL, (7.2b)

which provide the value of L2
L, defined in (4.2):

L2
L = 〈y2(2TL)〉 = CL〈v2〉T 2

L with CL = 8
3
. (7.3)

The proportionality constant
√

CL establishes an exact correspondence between the
length scale of the energy-containing vortices as expressed by 〈v2〉3/2/ε, and a specific
measure of their size obtained by calculating the standard deviation of a (Gaussian)
distribution of marked fluid particles, LL. Equations (7.2a) and (7.2b) are in general
a good approximation to the solution obtained for the more common exponential
form R(τ ) = exp(−|τ |/TL), and display the prescribed well-known features of 〈y2〉
at small and large travel times: 〈y2〉  〈v2〉t2 for t � TL and the Brownian diffusion
〈y2〉  2〈v2〉TLt for t � TL.

Figure 2 shows the evolution of 〈y2〉 as described by (7.2a) and (7.2b), normalized
by 〈v2〉T 2

L , as a function of the normalized dispersion time t/TL. The squared non-
dimensional length scale L2

L/
(
〈v2〉T 2

L

)
is also displayed in the figure, emphasizing the

relatively sharp transition from the 〈y2〉 ∼ t2 regime to the 〈y2〉 ∼ t regime. The in-
ternal frame displays an enlargement of the transition region, and includes the additi-
onal plot of 〈y2〉 for exponential R(τ ), i.e. 〈y2〉 =2〈v2〉T 2

L [t/TL+ exp (−t/TL) − 1]
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Figure 2. The evolution of the absolute dispersion variance 〈y2〉 in (7.2a) and (7.2b) for the linear
autocorrelation function (7.1a) and (7.1b). The horizontal dashed line corresponds to the square of
the non-dimensional large-eddy length scale LL. The enlargement in the internal frame includes
the additional plot of 〈y2〉 for exponential R(τ ), lying slightly below the original curve. The straight
lines are proportional to t and t2.

lying slightly below the original curve, within a maximum relative error of less than
15%. It is clear from figure 2 that the exact form of R(τ ) is relatively unimpor-
tant in the determination of the dispersion parameters. In fact, various alternative
forms have been observed not to produce fundamental differences in the dispersion
characteristics, as long as the expressions of R(τ ) generate the same Lagrangian time
scale TL =

∫ ∞
0

R(τ )dτ (Pasquill 1962, p. 92; Arya 1999, p. 157).

8. Comparisons with experiments and DNS
It is now possible to test with experimental and computational data some of the

quantities and relations predicted by the present theory.
The Richardson–Obukhov constant Cr in (4.6) is obtained substituting (7.3) into

(4.5), which then gives α = (9
√

6 − 22)/3. This value can also be extracted directly
from a numerical solution of (3.18). Therefore, we have:

Cr = (18
√

6 − 44)Co, (8.1)

or Cr ≈ Co/11. Assuming Co = 7, we obtain Cr = 0.64.
To test (8.1), the predicted Cr is used in (4.13), which provides Cr as a function

of the Taylor-scale Reynolds number Reλ, namely C̃r . Equation (4.13) is plotted in
figure 3 along with the data from Ott & Mann’s (2000) experiment and from the
DNS of Ishihara & Kaneda (2002), Biferale et al. (2005) and Boffetta & Sokolov
(2002a).

Ott & Mann (2000) detected inertial subrange scaling for relative dispersion in low
Reλ ( 100) turbulence generated by oscillating grids. The values of the measured

C̃r in Ott & Mann’s dispersion experiments indicate an average of C̃r  0.5 with an
estimated uncertainty of about 10%. The calculations were based on the assumption
that the Kolmogorov constant Ck = 2. The DNS of Ishihara & Kaneda (2002) at
Reλ = 283 also show inertial subrange scaling of relative dispersion for the releases
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Figure 3. The relation between the Richardson–Obukhov constant C̃r and Reλ predicted by
(4.13) (solid line), along with laboratory and DNS data (symbols).

with initial separation ro = 5η. The estimated C̃r increases with the initial separation

and converges to a value C̃r  0.7 for all ro = 20η. The curves generated by the
DNS of Biferale et al. (2005) at Reλ = 284 do not display a clear t3 scaling and
show a dependence on the initial separation. However, the authors use the same
extrapolation procedure as in Ott & Mann (2000) and Ishihara & Kaneda (2002) to

estimate C̃r = 0.47 with a reported error of the order of approximately 10%. In the
DNS of Boffetta & Sokolov (2002a) at Reλ  200, doubling-time analysis was used

to estimate C̃r  0.55.
Although the value Cr = 0.64 predicted by the present theory at high Reynolds

number is supported by the reported data, it is worth emphasizing that experimental
and numerical estimates of Cr are, at present, still uncertain, and a definitive
conclusion on the best estimate of Cr cannot be drawn from the available data.

We plot in figure 4 the complete solution for 〈y2
r 〉 in (6.4a) and (6.4b) for a

source 〈y2(0)〉 = 10−9〈v2〉T 2
L , along with Taylor’s 〈y2〉 obtained for an exponential

autocorrelation function. The mean square variables are normalized over 〈v2〉T 2
L . It

is emphasized that because 〈y2
r 〉 was determined entirely in terms of Lagrangian

variables (i.e. 〈v2〉 and TL) the variable 〈y2
r 〉/(〈v2〉T 2

L ), displayed in figure 4, has a
unique representation as a function of t/TL, likewise 〈y2〉. The figure shows the
smooth transition between scaling regimes, and the consistency between 〈y2〉 and
〈y2

r 〉 at the asymptotic limits. In particular, the large-time behaviour of 〈y2
r 〉 is not a

consequence of ad hoc assumptions, but is a natural result of the theory.
The Kolmogorov constant Ck provided by (4.11) is also tested with the results

of DNS of homogeneous turbulence at several Reynolds numbers reported in the
literature. For the comparison we use (4.14), which is based on (4.11) and describes

Ck as a function of Reλ, namely C̃k . Although there is some degree of uncertainty

in the asymptotic value of C̃k , there seems to be a certain consensus on Ck =2.13,
which is the estimate proposed by Sreenivasan (1995) as a result of a comprehensive
literature review of experiments and numerical simulations. This is also the value we
will use in our comparisons.



Turbulent relative dispersion 409

10–6 10–5 10–4 10–3 10–2

t/TL

10–1 100 101 102

10–8

10–6

10–4

10–2

100

102

�
y2 �

 /(
�
v2 �

T
L2 ),

  �
y r

2 �
/(
�
v2

�
T

L2 )

~t2

~t3

~t

Figure 4. The evolutions of Taylor’s absolute dispersion variance 〈y2〉, and relative dispersion
variance 〈y2

r 〉 [(6.4a) and (6.4b)] for an initial source 〈y2(0)〉 = 10−9〈v2〉T 2
L . The straight lines are

proportional to t , t2 and t3.

101 102

Reλ

103
1.0

1.2

1.4

1.6

1.8Ck

2.0

~

2.2

2.4

2.6
DNS Yeung & Zhou (1997)
DNS Gotoh et al. (2002)

DNS Ishihara & Kaneda (2002)
DNS Watanabe & Gotoh (2004)

Theory

Figure 5. The relation between the Reynolds-dependent Kolmogorov constant for the Eulerian

velocity structure function C̃k and Reλ predicted by (4.14) (solid line), along with data from various
DNS (symbols).

Figure 5 shows values of C̃k obtained by the DNS at several Reynolds numbers
performed by Yeung & Zhou (1997), Ishihara & Kaneda (2002), Gotoh, Fukayama &
Nakano (2002), and Watanabe & Gotoh (2004) along with (4.14) plotted as a
continuous line. The data from Yeung & Zhou have been estimated as the maxima
of the compensated Eulerian second-order longitudinal velocity structure function,
i.e. DLL(d)/(εd)2/3. It should be noted that only an approximated inertial subrange
behaviour can be inferred from Yeung & Zhou’s data, because the structure functions

do not show a well-defined plateau at Reλ � 240. In all other cases, C̃k was calculated



410 P. Franzese and M. Cassiani

2 3 4 5

Co

6
~

Ck
~

7 8
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Figure 6. The relation between the Reynolds-dependent Kolmogorov constants for the Eulerian

(C̃k) and Lagrangian (C̃o) velocity structure functions predicted by (4.11) (solid line), along with

data from various DNS (symbols). The DNS data are plotted as functions of C̃o using Sawford’s
relation (4.12). Key as for figure 5.

from the original estimated values of the Kolmogorov constant in the energy spectra
provided by the respective authors.

The same finite-Reynolds number DNS data for C̃k reported in figure 5 have been

plotted in figure 6 as functions of C̃o as calculated by (4.12). Equation (4.11) is also
displayed in figure 6. The data clearly support the relation Ck ∝ C2/3

o established by
(4.11), and are in good quantitative agreement with the theory.

Figure 7 shows the predicted Rr (t, τ ) = exp(−τ/Tr ) as a function of τ/t . According
to (3.17) and (4.6), Tr in the inertial subrange can be expressed as:

Tr =

(
2

1 + 4(6α)−1/3

)
t. (8.2)

The linear dependence of Tr on t implies that Rr (t, τ ) is a function of the single variable
τ/t . The experimental data for Rr (t, τ ) as a function of τ/t in inverse energy cascade
two-dimensional turbulence reported in Jullien et al. (1999) along with the DNS data
of Biferale et al. (2005) in three-dimensional turbulence are also plotted in figure 7.
The function Rr is expected to be qualitatively and quantitatively similar in two- and
three-dimensional turbulence. Kolmogorov k−5/3 and Richardson–Obukhov t3 scaling
have been observed numerically and experimentally within the inverse energy cascade
in two-dimensional turbulence, with different Ck , Cr and Co from those which are
observed in three-dimensional turbulence (Babiano et al. 1990; Jullien et al. 1999;
Boffetta & Sokolov 2002b; Goto & Vassilicos 2004). Our expression (8.2) for Tr

shows that Rr is based on the ratio Cr/Co, and should therefore be independent of
dimensionality. The data in figure 7 seem to confirm this feature. Similar behaviour
has been observed in the DNS of Goto & Vassilicos (2004) for a slightly different
definition of Rr .

The experimental data in figure 7 are in reasonably good quantitative agreement
with the prediction. However, it is emphasized that all data clearly support the
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Figure 7. The relative velocity autocorrelation function Rr (t, τ ) as a function of the single
variable τ/t predicted by the theory (solid line), along with laboratory data of Jullien et al.
(1999) (symbols) and the DNS data of Biferale et al. (2005) (broken lines), recorded at various
times after release. �, t = 3s; �, t = 5s; �, t = 7s; ◦, t = 9s; dotted line, t = 21τη; dashed line,
t =35τη; dot-dash line, t = 49τη; dot-dot-dash line, t =63τη; dot-dash-dash line, t = 77τη .

predicted dependence of Rr (t, τ ) on the single variable τ/t , which is an important
confirmation of the theory.

9. Discussion
The derivation of a differential equation for the mean square relative separation

based on first principles, with a physically reasonable form of the kinetic energy
used by the separation motions, is attractive because it encompasses several
constraints, chiefly the consistency with Taylor’s absolute dispersion theory. The
relative dispersion theory formulated in this paper is based on purely statistical and
kinematical considerations, and satisfies by construction the constraint 〈y2

r 〉 < 〈y2〉
at all times, which is especially important when parameterized forms of 〈y2

r 〉 are
used in concentration fluctuation analyses, or to isolate the contribution of internal
fluctuations (Wilson 1995; Luhar et al. 2000; Cassiani & Giostra 2002; Franzese
2003). The present theory is also instrumental in identifying quantities specific to
relative dispersion, such as relative velocity autocorrelation function Rr , relative
dispersion time scale Tr , and relative separation energy 〈v2

r 〉. The simplicity of the
approach allows for a detailed analysis of relative dispersion dynamics including the
complementary process of the meandering of the centre of mass.

Several studies show that 〈y2〉 is not as sensitive to the form of the velocity
autocovariance as to the Lagrangian decorrelation time scale. We find that, in the
case of relative dispersion, this property is more pronounced: the form of Rr is in
effect irrelevant, as the evolution equation can be written directly in terms of the
time integral of Rr , which defines the relative dispersion time scale Tr . Time scales of
relative dispersion have been related to the characteristic time scale of dissipation of
scalar fluctuations (e.g. Sykes, Lewellen & Parker 1984; Sawford 2004; Cassiani et al.
2005), which is used to define the micromixing time in PDF micromixing models such
as the IEM model (interaction by exchange with the mean, Villermaux & Devillon
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1972), and the IECM model (interaction by exchange with the conditional mean, Fox
1996).

The results obtained in this paper are extended to different Reynolds numbers using
relations based on Sawford’s (1991) definition of a Lagrangian time scale dependent
on Reynolds number, which proved to be accurate in the original comparisons with
the DNS of Yeung & Pope (1989), and in more recent analyses of the Kolmogorov
constant for the Lagrangian velocity spectrum (Lien & D’Asaro 2002). For instance, at
Reλ ∼ 75, we find a variation of Cr with respect to its asymptotic (i.e. infinite Reynolds
number) value of about 24%, and a variation of Ck of about 16%. At Reλ � 75, the
meaningfulness of estimates of Cr and Ck is questionable as Kolmogorov k−5/3 scaling
and Obukhov’s law itself may not hold.

The uncertainty and variability of the computational and experimental data used in
the paper should caution against final conclusions with regard to a reliable estimate
of the Richardson–Obukhov constant Cr . As shown in this paper, estimates of other
inertial subrange quantities such as the Lagrangian and Eulerian structure function
Kolmogorov constants Co and Ck should be an integral part of a final assessment
of Cr because of the interrelations between these constants. Additional relations
between Cr and the Corrsin–Obukhov constant Cϑ were found by Larchevêque &
Lesieur (1981) (see also Thomson 1996).

We thank David Thomson and Brian Sawford for their comments and encourage-
ment, the supercomputing centre CINECA (Bologna, Italy) for the hosting of the
DNS data on the relative velocity autocorrelation function and Alessandra Lanotte
for her kind assistance with these data. It is a pleasure to express here our gratitude
to Rainald Löhner for his unconditional support.

Appendix. Finite source
Taylor’s formula is based on the assumption that all particles are released from

the same point. If the source has a finite size, it can be regarded as an ensemble of
point sources distributed according to the source shape. In this case, 〈y2〉 is defined
by the average over the ensemble of realizations, and over all point sources which
define the actual source. In general, the two-time displacement autocovariance over
the ensemble of point sources can be written as:

[y(t1) − y(0)][y(t2) − y(0)] =

∫ t1

0

∫ t2

0

v(t ′)v(t ′′) dt ′ dt ′′, (A 1)

where the independence of v(t ′)v(t ′′) from y(0) in homogeneous turbulence was used,
and to = 0 was assumed. Therefore

〈y2(t)〉 = 〈y2(0)〉 +

∫ t

0

∫ t

0

〈v(t ′)v(t ′′)〉 dt ′ dt ′′, (A 2)

and Taylor’s formula for a finite source size
√

〈y2(0)〉 is simply written as:

〈y2(t)〉 = 〈y2(0)〉 + 2〈v2〉
∫ t

0

(t − τ )R(τ ) dτ. (A 3)

The effects of a finite source on relative dispersion are less straightforward.
Batchelor’s (1952) analysis of source effects on the relative dispersion of pairs of
particles initially separated by a distance ro = |ro| shows that, for sources in the
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Figure 8. Relative error of two-particle mean square separation 〈r2〉, (A 8), with respect to
Batchelor’s 〈r2〉∗, (A 7), namely 〈r2〉/〈r2〉∗ − 1 as a function of t/τs .

inertial subrange, 〈r2〉 − r2
o ∝ t2 for an initial time lapse t � τs = (r2

o /ε)
1/3:

〈r2〉∗ ≈ r2
o + 〈[u(x + ro) − u(x)]2〉t2, (A 4)

where 〈r2〉∗ indicates the approximate expression for 〈r2〉 according to Batchelor.
Because of isotropy

〈[u(x + ro) − u(x)]2〉 = 〈[uL(x + ro) − uL(x)]2〉 + 2〈[uN (x + ro) − uN (x)]2〉
= 11

3
Ck(εro)

2/3 (A 5)

where uL and uN are the velocity components parallel and perpendicular to the
separation vector ro, respectively. For clusters of particles with a given initial
distribution p(ro), further averaging over ro is required, and we have:

〈r2〉∗ =
〈
r2
o

〉
+ 11

3
Ckε

2/3
〈
r2/3
o

〉
t2. (A 6)

If the particle pairs are released with the same initial separation, i.e. p(ro) = δ(r − ro),
then (A 6) simplifies to

〈r2〉∗ = r2
o

[
1 + 11

3
Ck(t/τs)

2
]
. (A 7)

We will use this expression to estimate the error that is made neglecting the
source effect when using the approximate expression derived in § 6, for two-particle
three-dimensional separation, with the same initial conditions, i.e.〈

r2
〉

= Crε(ts + t)3, (A 8)

where ts = [r2
o /(Crε)]

1/3.
The relative error is given by:

〈r2〉 − 〈r2〉∗

〈r2〉∗ =

(
1 + C1/3

r t/τs

)3

1 + 11
3
Ck(t/τs)2

− 1. (A 9)

A measure of maximum relative error is somewhat ambiguous, because (A 4) is valid
only in the limit as t tends to zero, and a formula describing the transition to larger
times is not known. However, figure 8 shows that the relative error, (A 9), plotted as
a function of t/τs for Cr = 0.64 and Ck =2.13, does not exceed 27% for t � τs . The
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(dashed line), as functions of t/τs .

difference at times larger than τs is less meaningful as the definition of 〈r2〉∗ lacks
validity.

Figure 9 shows a detail of the small-time evolution of 〈r2〉∗ and 〈r2〉, plotted as
functions of t/τs . The figure corroborates the assumption that the correct velocity
initial conditions (which are accounted for in 〈r2〉∗) have, in fact, a marginal effect
and do not generate fundamental differences from the behaviour prescribed by 〈r2〉.
However, the importance of the comparison lies in the conclusion that the variation
of the slope of 〈r2〉 for t � 10τs does not imply quadratic or non-inertial subrange
scaling, but is simply a graphic effect of the representation of a non-zero initial
〈r2〉 on a log scale. In this respect, near-source deviations from the constant slope
line that appear in experiments (e.g. Ott & Mann 2000) or in numerical simulations
(e.g. Boffetta & Sokolov 2002a; Ishihara & Kaneda 2002; Gioia et al. 2004), while
certainly symptomatic of a finite source size, may not be necessarily attributable to a
quadratic (as opposed to cubic) behaviour in the entire time interval before a constant
slope is reached; near-source inertial subrange scaling does not appear in the form
of constant slope on a log–log plot if the source is finite.
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